Ли птицы летают. Презентация проекта "Все ли птицы летают? Почему некоторые птицы не умеют летать?". Как возникает подъемная сила у птиц

Летать умеют далеко не все птицы - в ходе эволюции некоторые эту способность утратили. В отряде пингвинов нет летающих видов. В других же группах есть как летающие, так и нелетающие, например бакланы и попугаи. Нелетающие птицы обычно встречаются на островах, где в свое время не водились хищники. Однако в наши дни они могут стать жертвой собак, мангустов и других хищников. Не летают также очень крупные птицы, например страусы, зато они быстро бегают и защищаются с помощью сильных ног.


Как птицы зависают в воздухе

Обычно, когда птица машет крыльями, она движется вперед. Но некоторые виды, например скопы, нектарницы и зимородки, могут висеть в воздухе.

Удивительны в этом отношении крохотные колибри, которые зависают перед цветком, чтобы выпить нектар. При этом птичка как бы стоит на хвосте, а крылья быстро описывают восьмерку в горизонтальной плоскости. Колибри способны очень долго и с большой частотой махать крыльями благодаря тому, что их грудные мышцы огромны по отношению к размерам тела.

Когда птица летит вперед, тяга создается лишь опусканием крыла, а подъемная сила - опусканием и взмахом. У других птиц подъемная сила возникает только при движении крыла вниз. Когда колибри зависает, туловище и крылья принимают почти вертикальное положение, При этом крылья создают подъемную силу, но не тягу.


Почему парят орлы?

Почти все птицы время от времени парят, хотя бы недолго. Даже колибри могут прервать свой жужжащий полет, чтобы спланировать с цветка на цветок на неподвижных крыльях.

Такие тяжелые птицы, как лебеди и дрофы, парят лишь при приземлении. Мелкие птицы, как правило, не могут эффективно скользить по воздуху сколько-нибудь продолжительное время. Для многих птиц парение - это не только альтернатива обычному машущему полету. Некоторые виды ястребов, а также орлы, пеликаны и аисты летают в основном именно паря -скользя по воздуху вверх. Имея длинные по сравнению с телом крылья, эти птицы используют восходящие потоки воздуха (если воздух неподвижен, так летать невозможно).

Восходящие потоки воздуха существуют возле препятствий: в горах, над холмами, обрывами и т.п. - здесь они небольшие, локальные. Кроме того, обширные воздушные массы поднимаются вверх, когда отраженное тепло солнца нагревает воздух у поверхности земли. В таком потоке движение вверх происходит по широкой спирали, при этом поднимающаяся воздушная масса образует как бы большой купол. Термических восходящих потоков обычно нет над большими водными пространствами, а также ночью. За некоторыми исключениями, парящие птицы избегают мест, где море встречается с сушей, и не летают в темноте.

В восходящем потоке птица поднимается кругами на большую высоту, перемещается в нужном направлении по горизонтали в процессе плавного спуска, достигает следующего потока и снова кругами поднимается вверх. Таким способом птицам за один день удается покрыть большое расстояние, преодолеть в итоге тысячи километров

Хищные птицы превосходно летают. Среди них есть настоящие воздушные акробаты, например полевой лунь, который передает пищу своей партнерше в полете. Самец и самка различаются по цвету, но у обоих белая гузка.
Самец бросает добычу самке, которая переворачивается вверх ногами, чтобы ее поймать.


Почему морские птицы так хорошо летают?

Восходящие потоки воздуха, обеспечивающие парение птиц над сушей, отсутствуют над морем. Поэтому такие птицы, как альбатросы, буревестники и олуши, используют принципиально иную технику парения.

Морские птицы владеют особым планирующим полетом, использующим силу горизонтальных ветров и отраженных от волн струй воздуха. Воздушные течения у поверхности воды медленнее, чем на высоте. Птица планирует с высоты почти до самой воды, затем за счет ускорения от спуска взмывает вверх и резко поворачивает против ветра. Ветер создает подъемную силу, перенося птицу вверх, в полосу более мощных воздушных потоков. Наконец она разворачивается и снова планирует вниз.


Взлет и приземление птиц

Для многих птиц взлет и посадка являются самым трудным маневром. При взлете птице необходимо придать сильное ускорение, чтобы оторваться от земли или ветке. Например, маленький воробей перед взлетом подпрыгивает и начинает быстро махать крыльями. Более тяжелые пернатые, что бы взлететь, делают разбег с расправленными крыльями. Водоплавающие птицы, чтобы набрать скорость бегут по воде перед взлетом.

Властелины воздуха стрижи и фрегаты не способны подняться в воздух с земли, для взлета эти птицы падают с высоты расправив крылья.

При приземлении птицы планируют с помощью крыльев. Во время посадки их тело разворачивается вертикально, птица распускает хвост, а ноги опускает вниз, выставив вперед. Роль тормоза при приземлении у птиц выполняет крылышко, это пучок перьев на первом пальце крыла.

Для приземления птице нужно трансформировать поступательное движение и смягчить удар о землю. Если движение не замедлится достаточно или помешает порыв ветра, птица может разбиться.

При посадке утка низко летит над водой и приводняется, тормозя своими перепончатыми лапами и создавая крыльями обратный ход, чтобы снизить скорость. Для взлета с воды или с суши птица создает крыльями поток воздуха. Так, нырок бежит по воде, хлопая крыльями, пока не наберет достаточной скорости для отрыва от поверхности.


Ласточки в полете

Ласточки в изящном и долгом полете ловят насекомых, на лету касаются воды, чтобы попить. Здесь изображена ласточка-касатка, распространенная в Европе, Северной Америке, Азии и Африке. Эти птицы редко опускаются на землю, в основном за материалом для гнезда. Этим занимаются самцы, у которых хвост длиннее и вилка на нем глубже, чем у самок, чья задача - строить гнездо.

У ласточек очень длинные сезонные перелеты: ласточки-касатки перелетают из Норвегии в Южную Африку, покрывая 11 000 км.

Преследуя летающих насекомых, ласточки почти все время изменяют направление полета. Ласточки на лету не только едят, но и пьют, очень широко раскрывая клюв.

Почему и как летают ? Почему одни могут парить, а другие нет? Почему стая птиц может мгновенно и одновременно изменить направление полета? Человечество издавна задумывается над вопросами, касающимися полетов птиц, насекомых. На многие из них биологи могли бы дать ответ уже сегодня, если бы не одно обстоятельство - если бы воздух не был прозрачным. До сих пор при съемке полета птиц даже высокоскоростной камерой чрезвычайно трудно проследить совершенство полета с точки зрения законов аэродинамики.

Что только не придумывали для облегчения поисков ответа на возникающие вопросы! Так, американский исследователь из Южнокалифорнийского университета Джефф Спеддинг стал использовать при съемках полетов птиц мыльные пузыри, заполненные . Если такой пузырь достаточно мал, например, с булавочную головку, находящийся внутри газ заставляет его стремиться вверх. Этими пузырьками можно заполнить относительно большие емкости. В начале восьмидесятых годов Спеддинг изучал полет . Он заставлял их пролетать сквозь облако таких пузырьков, созданное в большом просторном помещении, а затем высокоскоростной камерой фотографировал оставленный ими в этом облаке след полета.

Съемка показала, что при пролете голубей воздух закручивается совсем не так, как это должно быть согласно теории аэродинамики. При съемке можно было бы использовать и дым, но пузырьки с гелием оказались лучше; за ними было легче следить. Благодаря этому Джефф Спеддинг сумел довольно точно описать, как движется крыло голубя.

Чтобы проанализировать полет птиц, исследователи по традиции полагаются на теоретические законы аэродинамики, выведенные для летательных аппаратов с неподвижным крылом. Но оказалось, что при перенесении их на действия живых существ они уже не верны. Птицы и более сложны, и более совершенны, чем любые из современных летательных аппаратов. Рассматривая птицу как модель , ученые исследуют ее в аэродинамической трубе. Создают они и особые роботы-крылья. И все это делается с целью определить, что же делает птица, когда летит, и произвести соответствующие измерения. Зачем это нужно? Чтобы помочь человеку улучшить конструкции проектируемых им летательных аппаратов и в первую очередь военных самолетов с высокой маневренностью.

Полет птиц за счет мускульной энергии - это чудо, которому люди не перестают удивляться и сегодня. Ведь чтобы поднять в воздух человека с помощью мускулов, нужны крылья размером 42,7 метра. А его грудная клетка должна иметь толщину 1,8 метра, чтобы вместить мускулы, достаточно мощные для производства взмахов.

Птицы, как, впрочем, и летательные аппараты, должны быть легкими, но мощными. Сегодня птицы могут летать, поскольку в процессе их внутренние органы и кости стали намного легче, чем у их предков рептилий. Пример ультралегкой конструкции являет собой океаническая птица фрегат: при размахе крыльев более двух метров его скелет весит менее ста двадцати граммов - вдвое меньше общего веса перьев.

Кстати, летучие мыши - превосходные летуны - также получили в результате эволюции суперлегкие кости. Потому они и висят, отдыхая, вниз головой, просто не могут встать на ноги. Их кости слишком тонки, чтобы выдержать нагрузку тела в стоячем положении. А черепа птиц вообще напоминают скорее яичную скорлупу, чем бронезащиту. Крылья же птиц, состоящие в основном из перьев, являют собой прямо-таки шедевр инженерного искусства природы: легкие и гибкие, но почти не поддающиеся разрушению.

Подъемная сила птицы создается за счет того, что воздух равномерно обтекает изогнутую поверхность крыла. А поступательное движение - за счет взмахов. Они-то и ставят в тупик многочисленных исследователей полета. Крыло - это не просто весло, которым птица «гребет» в воздухе, как полагал Леонардо да Винчи. Некоторые исследователи считают, что птица осуществляет повороты, вывернув внутреннюю часть крыла так, чтобы создать сопротивление на той стороне, куда она поворачивает, подобно действиям с портом сна на каноэ.

Сопротивление воздуха замедляет полет, а ведь от его скорости зависит иногда жизнь или смерть птицы. Американский биолог и летчик Кен Дайал обнаружил, что птицы часто осуществляют поворот за счет наклона крыла вниз, наподобие того, как отклоняются элероны у самолета. Используя рентгеновский аппарат, Дайал провел наблюдения за полетами птиц в аэродинамической трубе, благодаря чему увидел движение скелета во время полета, а также во время вдохов и выдохов птицы.

Совершая различные маневры, птицы должны координировать множество точных движений, начиная от изгибов и полного поворота крыла до изменения амплитуды взмахов. В полете им помогает центральная нервная система, управляющая . Но во многом птицы все же похожи на самый современный истребитель, обладающий высокой маневренностью и управляющийся компьютерной системой, позволяющей производить корректировку на большой высоте за доли секунд. Конечно, у птиц нет компьютера, зато есть крупный мозжечок, а, как известно, именно он участвует в координации движений животных.

Немало известно о полетах птиц и шведскому зоологу и ветеринару Ричарду Брауну. Если к крыше кабины планера прикрепить короткие нити, то при нормальном планировании они спокойно «летят» назад, но как только планер станет терять скорость, воздушные вихри поднимут нити вверх и даже могут направить их вперед - своего рода предупреждение об опасности. Точно так же, считает Браун, тысячи перьев, покрывающих крылья и тело птицы, могут работать как датчики воздушных потоков. Благодаря нервным окончаниям, птица сразу же чувствует движение перьев. Мускулы, на которых расположены перья, в основном действуют как пассивные датчики информации для нервной системы и в меньшей степени как движители. Чувствительные элементы на крыльях и определяют начало турбулентности (вихревого движения при активном перемешивании слоев воздуха) в обтекающем потоке, заставляя птицу изменить темп движения крыльев или несколько опустить их вниз.

Очень важны для птиц и акробатические способности. Ласточки, например, проводящие в воздухе до восьми часов в день, то и дело взмывают высоко в небо и бросаются вниз в погоне за насекомыми. А вот малиновки находятся днем в воздухе всего лишь несколько минут, совершая короткие перелеты, длящиеся обычно несколько секунд. Большая часть их полетов приходится на взлеты и посадки - самые утомительные моменты любого полета. Поэтому многие крупные птицы стараются делать их как можно реже. Грифы, соколы, альбатросы и другие крупные птицы почти все время проводят в парящем полете на воздушных течениях с распростертыми и почти неподвижными крыльями.

Для большей эффективности полета птицы искусно используют характерные особенности своих перьев. Например, грифы, совершая медленный полет по кругу, чтобы не потерять высоту, выпрямляют длинные, жесткие перья на концах крыльев и разворачивают их веером так, чтобы между ними образовались щели, препятствующие перемешиванию воздуха в потоке за птицей. В результате сопротивление снижается, а подъемная сила возрастает.

Сокол же, наоборот, пикируя на добычу, укладывает свои перья так, чтобы сократить площадь их поверхности. Ему нужна скорость, а не подъемная сила. Построить диаграмму полета птицы, пикирующей со скоростью 320 километров в час, непросто, и обычно скорость пикирования определяется приблизительно. Но специалисты надеются, что однажды им удастся вывести формулу построения диаграммы полета, применяемую к птицам любых размеров и форм.

А как летают насекомые? Мелкие осы и жуки, например, как бы гребут крыльями по воздуху, сопротивление которого им только помогает. Они ощущают воздух как что-то вязкое, наподобие сиропа. Им не нужна большая подъемная сила, и если они вдруг прекратили бы свое движение, то стали падать на землю не быстрее, чем комок пыли. Они «плывут» по воздуху, используя свои крылья, покрытые ворсинками, для создания большего сопротивления. При обратном движении крыла ворсинки моментально складываются. Происходит нечто подобное тому, как снижается сопротивление у весла, вынимаемого из воды. Кстати, крупным насекомым летать труднее.

Английский зоолог Чарлз Эллингтон из Кембриджского университета, интересующийся шмелями, в одной из своих работ писал, что по законам аэродинамики шмели летать не должны. Но они летают! Крылья шмелей и других крупных насекомых создают подъемную силу гораздо большую, чем определяет теория аэродинамики. Как это им удается? Теперь, кажется, ответ на этот вопрос получен. Это произошло при изучении полета крупных флоридских бражников (ночных ), имеющих размах крыльев более десяти сантиметров. Когда такой бражник пролетает сквозь дым, который, кстати сказать, его совсем не беспокоит, можно видеть, как воздух вихрями закручивается от его тела к концам крыльев вместо того, чтобы согласно теории аэродинамики плавно обтекать крылья по направлению от их передней кромки к задней. Была построена большая механическая модель бражника (из ткани и меди) с двигающимися крыльями. И робот-бражник тоже создавал вихри, направленные в разные стороны.

Сегодня биологи уже вплотную приблизились к решению загадок: как насекомые и мелкие птицы создают такую большую подъемную силу при малом запасе энергии, как и почему они летают.

Человек всегда завидовал птицам. Как же, ведь они летают, а он не может! Двигатель развития летательного аппарата птиц - добывание пищи. Ну, а как же нелетающие птицы, например, страусы? Эти - исключение из правил. У людей вопрос с решен давно, и теперь, приблизившись к разгадке полета, узнав, насколько нелегко он дается птицам, может быть, не стоит им завидовать?

P. S. О чем еще думают британские ученные: о том, что исследования механики полета птиц могут быть очень перспективными в том числе и с коммерческой точки зрения. Ведь если какому-нибудь ученому вдруг удастся разгадать тайну птичьего полета и чего доброго смастерить настоящие крылья, как мифический Дедал смастерил их для себя и своего сына Икара, думаю, такой ученый вмиг стал бы миллионером. Позже появились бы книги об истории его успеха, а еще позже книги по бизнесу (как на сайте /biznes_literatura/buhgalterija__nalogi__audit/) о роли инноваций в бизнес планировании и крылья из средства безграничного полета превратились бы в бухгалтерскую категорию.

С сегодняшнего дня, дня Герасима Грачевика, в России ждут перелетных птиц. Совершая дальние перелеты, они возвращаются из теплых стран. Как они ориентируются? Почему летят клином? Чем питаются? Мы решили ответить на эти и другие "птичьи" вопросы.

Как проложить маршрут

Как не ошибиться с маршрутом? Ведь ошибка будет стоит жизни! Но для крылатых путешественников это вовсе не проблема: маршруты давно определены и остаются неизменными из года в год. Куда держать курс, молодое поколение узнает от старших товарищей. Но как быть, если в стае остался один неопытный молодняк? Как узнать дорогу, не имея карты и gps-навигатора? Оказывается, такой навигатор есть у каждой птицы, это врожденный инстинкт, который и ведет птиц в верном направлении. Это подтверждают случаи, когда свой первый полет молодые особи совершали абсолютно самостоятельно.

Ветер, ветер, ты могуч!

Погодные условия, безусловно, влияют на ход миграции. В теплую погоду птицы летят дольше, и поток прилетающих птиц резко увеличивается. А если вдруг наступает сильное похолодание, птицы и вовсе могут развернуться обратно на юг. Во время осеннего перелета похолодание способствует более быстрому отлету. Утки могут двигаться на юг без остановки, покрывая большие расстояния -150-200 км. Ветер может мешать перелету, и, наоборот, способствовать. Чайки, летающие довольно медленно, летят в штиль или с попутным ветром. Естественно, при наличии такого помощника перелет происходит интенсивнее.

По порядку рассчитайсь!

Многие птицы летят клином, как, например, журавли и гуси. Некоторые считают, что клином летят птицы для того, чтобы рассекать воздух подобно тому, как нос корабля рассекает волны. Но это не так. Смысл клинообразного строя, впрочем, как и любого другого (шеренгой, дугой, косой линией), заключается в том, чтобы птицы не попадали в вихреобразные потоки воздуха, создаваемые движениями крыльев соседей. За счет того, что впереди летящие птицы взмахивают крыльями, создается дополнительная подъемная сила для тех, кто летит сзади. Гуси таким образом экономят до 20% энергии. При этом, на птицу, летящую впереди, возлагается большая ответственность: она является проводником и направляющим для всей стаи. Это тяжелая работа: органы чувств и нервная система находятся в постоянном напряжении. Поэтому ведущая птица быстрее устает и ее вскоре подменяет другая.

Перелет перелетом, а обед по расписанию!

Во время перелета стае не всегда удастся полноценно питаться - возможности для добычи пищи очень ограничены. Откуда взять силы для такой тяжелой работы? Собираясь в долгий путь, мы, как правило, заранее думаем о своем питании. Вот и птицы предпочитают хорошо подкрепиться на дорожку: готовясь к перелету, они кушают очень плотно для того, чтобы накопить побольше жировых запасов для долгого перелета.

Отдыху время, а перелету час

Перелет – дело трудное, и запас энергии быстро иссякает, поэтому птахам очень важно восстанавливать силы. Некоторые виды птиц летят практически без отдыха: вальдшнеп, например, за одну ночь покрывает расстояние до 500 км без остановок. Другие же не могут похвастаться такой выносливостью и делают много остановок. Как правило, и скорость у этих птиц небольшая. Они устраивают себе отдых у водоемов, где могут восстановить силы, подкрепиться и утолить жажду. На это уходит большое количество времени, а на перелет в день в среднем приходится около часа.

Блуждая в потемках

Многие птицы совершают перелет в ночное время. Перепела, лысухи и вальдшнепы, например, летят только в темное время суток. Причем, ночью совершают перелеты не только птицы, ведущие ночной образ жизни: дикие гуси, гагары и многие виды уток продолжают свой путь в любое время суток. А как же летят в ночных условиях птички, привыкшие к дневному свету? Дело в том, что птицы умеют ориентироваться по звездам, солнцу и очертаниям ландшафта. Также они легко определяют свое местоположение по магнитному полю Земли, поэтому могут передвигаться в условиях очень плохой и даже нулевой видимости.

Почему птицы не сталкиваются в полёте? October 3rd, 2016

Кто же не видел стаи птиц. А помните, как они синхронно меняют направление в полете? Разве это не удивительно? Как они это делают?

Стаи скворцов - одно из удивительных явлений природы. Сотни, если не тысячи, птиц одновременно взмахивают крыльями, демонстрируя чудеса пилотажа. Движения каждой особи выглядят случайными, но птицы никогда не сталкиваются друг с другом, будто управляемые невидимым дирижёром. Стая скворцов - яркий пример способности птиц к синхронному полёту. Биологов не перестаёт мучать вопрос: как птицы в полёте умудряются избегать столкновений.

Вот как это выглядит на видео...

Профессор Квинслендского университета Мандьям Шринивасан полагает, что птицы сумели выработать стратегию безаварийного полёта под воздействием длительной эволюции. Механика птичьего полёта давно интересовала Шринивасана, и он решил провести серию экспериментов с волнистыми попугайчиками, чтобы смоделировать их траекторию. Он отметил, что птицы были склонны всегда огибать препятствие справа, что способствовало плавному движению. В течение 120 наблюдений не произошло ни одного столкновения.

Испытательный туннель. Синими и красными пунктирными линиями показаны поля зрения камер наблюдения

Профессор Мандиам Сринивазан (Mandyam Srinivasan) из Университета Квинсленда (Австралия) поставил задачу изучить, какие именно стратегии применяют птицы для избежания столкновения на встречных курсах. Для этого с двух сторон туннеля длиной 21,6 метра выпускались пары птиц навстречу другу. Представляющие интерес потенциальные действия птиц принимались за гипотезы в байесовской сети для вычисления их вероятности. Предсказанные вероятности сравнивалась с наблюдаемыми фактами. Таким образом исследователи делали выводы о стратегиях ухода от столкновений, которые действуют у птиц.

Перед началом испытаний 10 волнистых попугайчиков (Melopsittacus undulatus) мужского пола были обучены пролетать туннель от начала до конца в одиночку.

За 4 дня было записано 102 экспериментальных полётов 7 пар, составленных из 10 волнистых попугайчиков. Не было зафиксировано ни одного столкновения. Затем провели анализ видеозаписей с фиксацией, каким образом птицы смещались в стороны или по высоте при приближении друг к другу.

Результаты оказались довольно неожиданными. Как видно из таблицы, птицы показали склонность почти всегда смещаться вправо, хотя вероятность такого смещения сильно варьируется от особи к особи.

Это очень любопытный вывод. Проведённые ранее исследования на пчёлах показали, что пчёлы склонны смещаться влево при сближении друг с другом. Так или иначе, но склонность смещаться в какую-то определённую сторону является важным знанием. Очевидно, это знание должно быть одинаковым у всех особей в популяции. Если птицы будут при сближении смещаться в случайную сторону, то при выборе влево/вправо вероятность столкновения составит 50%.

Попугайчики в туннеле летали на разной высоте. Учёные обнаружили, что некоторые конкретные особи явно предпочитают лететь ниже/выше другой конкретной особи, что не укладывается нормальное распределение.



Предпочтение конкретной особи лететь выше или ниже другой особи

Несмотря на отдельные случаи изменения высоты полёта, в целом птицы при сближении не меняют высоту, а смещаются в горизонтальной плоскости. Чаще всего — вправо. Учёные делают вывод о наличии у волнистых попугайчиков своеобразных правил движения, зашитых на «аппаратном уровне». Вероятно, это может быть связано с разницей в левом и правом полушариях головного мозга. Так, у попугайчиков правое полушарие и левый глаз отвечают за тактические задачи, такие как обнаружение вероятного столкновения в полёте. В свою очередь, левое полушарие и правый глаз занимаются другими вещами, такими как обслуживание полёта и контроль скорости. Кстати, это одно из эволюционных преимуществ животных с разными функциями левого и правого полушарий (подробнее см. научную работу «Выживание с асимметричным мозгом: преимущества и недостатки церебральной латерализации»).

Таким образом, исследование подтвердило, что наличие самых простых общих правил позволит животным или машинам избежать столкновения.

Во-первых, нужно договориться смещаться в одну сторону. Неважно — влево или вправо, но все должны смещаться в одну сторону.

Во-вторых, выработать алгоритм изменения высоты. Один из участников движения должен смещаться вверх, а другой — вниз. Правила изменения высоты можно реализовать разными способами. Например, присвоить иерархический порядковый номер каждому отдельному самолёту. При встрече самолёт с более высоким номером в иерархии всегда смещается вверх, а с более низким — вниз. Универсальную иерархию непросто внедрить, да и она требует обмена информацией между судами перед сближением. Другой вариант — установить каждому самолёту правило случайного смещения вверх или вниз. В этом случае риск столкновения уменьшится со 100% до 50%.

Учёным пока не удалось понять, каким образом птицы выбирают направление смещения по высоте. Возможно, у них тоже действует некая иерархия.

Но действительно ли секрет синхронного полёта настолько прост?

Ширинвасан с коллегами использовали видеокамеры с возможностью высокоскоростной записи для фиксации полёта 10 попугайчиков с противоположных концов туннеля. Они обнаружили, что для избежания столкновений птицы использовали двоякую технику. Во-первых, встречая в воздухе другую птицу, они отклоняются вправо. Во-вторых, они выбирают, лететь им выше или ниже встречной птицы. Пока остаётся неясным, что влияет на выбор высоты. Профессор предполагает, что, возможно, к этому имеет отношение иерархия птиц в стае, и планирует продолжать исследования.

Хотя работы профессора Ширинвасана позволяют по-новому взглянуть на полёт попугайчиков, они не объясняют механику полёта всех птиц. В стае попугайчиков иная социальная структура, чем, скажем, у скворцов или альбатросов, так что сложно на одном примере делать выводы о синхронном полёте всего спектра пернатых. Также встаёт вопрос о том, были ли попугайчики домашними или дикими, и какое влияние прирученность животных оказывает на их полёт.

В результате других исследований, посвящённых птичьим стаям, были сделаны не менее важные выводы. Например, итальянский физик Андреа Кавагна обнаружил у скворцов развитую систему взаимооповещения. В доли секунды одна особь может передать другим сигнал, направляющий всю стаю прочь от хищника или в обход препятствия. А Дэвид Уильямс из Университета Вашингтона обнаружил, что голуби перемещаются в тесноте, используя различные позиции крыльев. Манипулируя аэродинамикой своего тела, голуби оказываются способны летать с невероятно высокой скоростью в сложном окружении, например, в городской среде.

Голуби складывают крылья, чтобы пролететь между препятствиями:

источники

Проект: «Все ли птицы летают?

Почему некоторые птицы не умеют летать?»

Руководитель: учитель начальных классов МБОУ – Полужская ООШ

Пинчукова Елена Фёдоровна.

Исполнители: учащиеся 3 класса


У нелетающих птиц нет киля, выроста на грудине, к которому крепятся мощные мускулы, отвечающие за полет. У всех нелетающих птиц киль либо очень маленький, либо вовсе отсутствует. По этой причине крылья у них слабые, и птицы не способны к полету.


Страусы крупнейшие из ныне живущих на Земле птиц. Некоторые из них достигают в высоту 2,7 метра. Обитают страусы на открытых равнинах Африки. Питаются страусы семенами, плодами, а также ящерицами и насекомыми. Страусы не могут летать, но зато быстро бегают. На коротких расстояниях они могут развивать скорость до

70 км/ч.


Эму это большие нелетающие птицы, живущие в Австралии, в высоту они достигают 2 м. Эти птицы питаются семенами, плодами и насекомыми.


Итак, почему же страусы не летают?

А вот почему! Они слишком большие, птица может летать, если ее масса не превышает 20 кг, а страусы весят 120 кг.


Это интересно!

Одно страусиное яйцо равно

40 куриным яйцам и может выдерживать вес человека.


Пингвины – нелетающие птицы.

Существует 18 различных видов пингвинов.

Они живут только на побережьях морей Южного полушария – на островах у берегов Австралии, в Новой Зеландии, в Южной Африке и в южной части Южной Америки. Пингвины – прекрасные пловцы, они могут передвигаться в воде со

скоростью 30 км/ч. Те пингвины, которые живут среди снегов и льдов не вьют гнёзд.


Императорский пингвин -

самый крупный из пингвинов.

Его рост – около 1,2 метра, а вес – около 75 кг.

Когда самка откладывает яйцо, самец оберегает его от соприкосновения со льдом, положив на собственные перепончатые ступни. Когда вылупляется птенец, самец, ничего не евший в течение двух месяцев высиживания, отправляется на поиски пищи, в то время как самка остаётся с птенцом, чтобы кормить и защищать его.


Прыгающий пингвин назван так из-за того, что очень ловко прыгает с камня на камень. Самое заметное его отличие – длинный хохолок на голове. Только что вылупившиеся птенцы прыгающего пингвина покрыты мягким пухом. Они беспомощны, и родителям приходится в течение нескольких недель кормить и оберегать их.


Пингвин-осёл издаёт звук, похожий на крик осла. Он также известен как черноногий пингвин.


Королевские пингвины живут в Антарктике. Они могут с большой скоростью скользить на животе по льду, чтобы удрать от врагов .


Пингвины Адели собираются огромными колониями, иногда в одной группе насчитывается до полумиллиона особей.


Почему не летают пингвины?

Пингвины раньше летали, но чаще скрываясь от врагов, прятались под водой, и постепенно их крылья потеряли перья и превратились в плавники.


Но это еще не все, чем могут удивить нас эти птички. Мы кушаем три раза в день, а пингвины могут не кушать до трех месяцев. Человек не может жить без воздуха, а пингвины могут не дышать почти18 минут. Как интересно!


Какапо, или совиный попугай , – единственный попугай, который разучился летать. Он обитает лишь в Новой Зеландии, вокруг у него не было врагов и ему не нужно было прятаться или улетать. Какапо живет в норах. В них он проводит целый день и лишь после захода солнца выходит оттуда, чтобы отправиться на поиски пищи - растений, семян и ягод.


Маленькая птичка Киви тоже живет в Новой Зеландии и охраняется государством. Она совсем не имеет крыльев.


Киви - это небольшая и пугливая ночная птица. У киви прекрасное обоняние, а ноздри расположены на конце ее длинного клюва. Киви засовывают клювы в землю, чтобы отыскать еду.


Тристанский пастушок , обитающий на острове Неприступный, является самой маленькой нелетающей птицей в мире. Его длина всего 17 см, а вес меньше 30 г.


Итак, сделаем вывод:

на земле есть нелетающие птицы.

Но почему они не летают?

1. Имеют большие размеры и массу тела.

2. Из-за хищников птицы больше плавали, чем летали.

3. Не было хищников, и у птиц не было необходимости летать.